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APPENDIX A. SIMILARITY MEASURE 

We wish to evaluate the similarity between a user’s search 

and  a dataset; specifically, we wish to quantify and replicate 

the observed user perception of “closeness” from Study 1.  

Our observations indicated that user judgments were not 

based solely on the nearest point, but also included some 

consideration of the furthest extent as well.  As mentioned  in 

Section 3.2, our candidate similarity measure adapts a fea-

ture-space model, with each search term being treated as a 

separate dimension. 

If a search term specifies a desired  data range and  a 

matching variable is found  in a dataset, we need a measure 

that can provide a similarity value that resonates with the 

intended  users. Cognitive science has long recognized that 

people frequently use distance as a metaphor for similarity, 

including interpreting time (and other entities) as distance 

[1]. We use a distance-based measure that compares the 

search range to the data range. While we use distance as a 

basis, we are approximating similarity, thus, a smaller dis-

tance translates to a higher score. There are many options for 

representing the proximity of two entities (in our case, the 

search term and the matching dataset feature), with varying 

computational complexities [2]. We build  on a common and  

easily-calculated  distance measure: the minimum (and max-

imum) distance between two features, which can be estimat-

ed by knowing the features’ bounds. We can use this meas-

ure to identify whether a feature is completely within the 

search term bounds and so is a complete match; or whether 

the two are disjoint; or if they overlap, and , if so, by how 

much. 

Our distance measure for a one-dimensional variable, such 

as salinity or time, is shown in Equations 1-4; Fig. 12 depicts 

our measure graphically. In essence, we regard the observa-

tion values within a dataset as a distribution of “distances” 

from the query center, with a single point value (such as a 

constant value for a variable, or a single time) being the most 

constrained distribution. Each search term itself represents a 

desired  distribution of the relevant variable. (At present, we 

regard the contents as being equally distributed between the 

bounds, as is common in database indexing [3]; future re-

search may consider alternate distributions.) 

Let QRmn and  QRmx represent the lower and upper bounds 

of the search term, and let vXmn and  vXmx represent the mini-

mum and maximum values of observations for the matched  

variable v in a dataset d.  (In the case of time, for calculation 

purposes all times are translated into a monotonically in-

creasing real number, for example “Unix time”). 

Equation 1 calculates vRmn, the distance of variable v’s min-
imum value from the search term’s “center”, i.e., the mean of 

QRmn and  QRmx, and then scales the result by the search term 
“radius” (half the size of the term’s interval). Similarly Equa-

tion 2 calculates vRmx, the “scaled  variable-range distance” of 
the variable’s maximum value. Equation 3 calculates an 
overall d istance for this variable’s range from the search 
term’s range, normalized by the search term radius. The first 
subcase applies to variable values completely within the 
term’s range, and thus at a distance of 0 radii. The second 
through fourth cases account for a variable range overlap-
ping the search range at the high end, at the low end, and on 
both sides, respectively; these subcases have the distance cal-
culation adjusted based on the percent of the variable’s range 
that is estimated  to be inside the search range. The last su b-
case accounts for a dataset completely outside of the search 
term’s range. 

In Equation 4, we then apply a scaling function s to vRdist to 

convert the calculated distance from the search term center 

into a relevance score vRs, while allowing a weighting factor 

to be applied to the distance result. Per Montello [4], this im-

plicit scaling factor may change for different users or differ-

ent tasks; our current implementation uses s(vRdist ) = (100 – f * 
vRdist). That is, if the distance is f ”radii” (currently f = 10) from 

the search term’s center it is considered  “too far away” to be 

relevant and given a score of 0 or less, while a distance of 0 

(i.e., completely within the search term’s range) is given a 

score of 100. 

Equations 5 and 6 adapt this measure to the case of ranking 

geospatial features by an estimate of overall “closeness” to 

the search term. Similarly to the one-dimensional measure 

in Equations 1-4, we use minimum and maximum distance 

between the search term and dataset feature. This measure 

takes the overall shape into account, u nlike a nearest-

neighbor approach, is more nuanced than the often-used cat-

egorization of the spatial relationship of two shapes into con-

tains, intersects or disjoint, and is easy to calculate. For simplic-

ity in the interface, the search term is represented as a rectan-

gle on a map. The geolocations within the dataset can be rep-

resented by any of the common geometries: point, line, pol-

yline or polygon (e.g., convex hull) [5].   
For a geospatial feature: let C represent the center location 

Fig. 12. Graphic depicting a portion of the candidate distance measure, as applied to a one-dimensional variable (v) to calculate a simi-

larity score. The search range Q is shown in blue; the search radius r is one-half of the range of Q. The range for variable v in each of 

six datasets (labeled A to F) is shown, along with each dataset’s resulting score for this search term. For each dataset, the scoring func-

tion S identifies the middle of the range of the variable v, scales it by the search radius, and converts the result to a score. Datasets whol-

ly inside the search range (dataset A) are given a score of 100. Datasets wholly outside the search range are given a score based on the 

number of radii that the middle of the range is from the search center (datasets C-F). Datasets whose middle is at 11 radii from the 

search center are given a score of 0, and ones further away may receive negative scores (dataset E). Datasets that overlap the search 

range are scored based on the proportion of the dataset range that is inside the search range (dataset B).      
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of the geospatial search term and r the rad ius.1 Let the loca-

tions of all the observations within a single dataset d be rep-

resented by a geometry g. Let dGmn and  dGmx represent the min-

imum and maximum distances of the geometry from C, us-

ing some distance measure such as Euclidean distance. Then 

Equation 5 calculates the overall d istance measure for three 

subcases: the dataset’s geometry is completely within the 

search radius; it overlaps the search area, or it is completely 

outside the search area. In each case, a distance is ca lculated. 

Equation 6 gives a geospatial-relevance score dGs for dataset d 

by again applying the same scaling function s to the calculat-

ed overall d istance measure. 

Lastly, the scores vRs for each search term, including any 
geospatial score dGs, are combined  to give an overall score 
dscore for this dataset. We take a simple average of these scores. 

Note that each of these scores has been converted  to a unit-

less value implicitly weighted  by the user via the radii of the 

ind ividual search terms. 

We tested  several variations of our distance measure on 

the datasets judged by the study participants. (Our approach 

is in common with TREC approaches that evaluate alternate 

measures against previously judged  documents, rather than 

the entire corpus.) The candidate measure, as described in 

Equations 1-3, uses the center of a variable’s range as the 

point to which distance is calculated ; that is, mindist + 

range/ 2. The variations evaluated different weightings of the 

closest edge versus the center, per ind ications from the first 

user study and supporting informally expressed opinions by 

some study participants. In particular, we evaluated :  

SN: mindist 

S2: mindist + range/ 8  

S3: mindist + range/ 4 

S4: mindist + 3/ 8*range 

SX: mindist + range (i.e., maxdist) 

In add ition, we tested  several variants of a “Euclidean” 

measure. There are multiple ways that a Euclidean d istance 

can be calculated  between two regions (in particular, between 

a query and a dataset summary). A commonly used surro-

gate for distance between geographic entities is centroid -to-

centroid distance, although it is regarded by some as a poor 
 

1 While the formulae described here are for circular search regions for simplicity 
in exposition, we have adapted these formulae for non -circular search regions 
by using an analog to radius based on the search region shape. 

approximation when the entities are large and close together  

[2] and it is not known how well it reflects how users per-

ceive d istances. However, alternatives (such as closest-point 

distance) have similar or worse problems, so we chose cen-

troid distance.  To use this measure for queries involving in-

comparable dimensions — for example, kilometers and  

days—requires scaling of some sort.  We calculated  distance 

based  only on matched search terms and  for each component 

value we use the search-centroid  and  the summary-centroid . 

The Euclidean d istance tested in Section 4.2.3 normalizes a 

value by the maximum range of the corresponding variable 

in our corpus. (For example, a temperature value is divided  

by the d ifference between the maximum and minimum val-

ues present in the corpus.)   We also tried several variants on 

normalization, includ ing no normalization . The overall re-

sults of each variant were similar, although the individual 

categories of searches showed  significant variations. None of 

these variants performed as well as our measure. Note that 

our measure scales based on query bounds and not just the 

query centroid, and  also ad justs for overlaps between search -

term ranges and summary bounds.  
The results of the evaluation are shown in Section 4.2.3.  

APPENDIX B. ALGORITHM FOR DATASET SCORING 

We treat searches as a conjunction of desired  features. In 

general, we represent each search term as a tuple of the form 

<variable, range, units>. For example:   

{<“time”, [2010-04-15:2010-07-15], date>, 

     <“temperature”, [5:10], C>, … } 

Dataset summaries, stored in our catalog, are likewise a set of 

features of the same form. In general, we have one feature for 

each column within a tabular dataset. (Exceptions may exist. 

For example, we combine latitude and longitude into a single 

geospatial feature, and have considered adding elevation .) 

This model gives us symmetry between the search terms and  

the dataset features, which allows a returned  dataset to itself 

serve as a search query to find similar datasets. 

Conceptually, each search generates a rating of every cata-

log entry (although for performance reasons, our implemen-

tation avoids doing so). Fig. 13 shows simplified pseudo-code 

for our algorithm. 

For each dataset, we first match each search term to a fea-

ture of this dataset, or to no feature (function Match). Our 

initial matching function, used in the user study and reflected  

in the pseudo-code here, simply looks for an exact match be-

tween the variable named in the search term and a named 

column in the dataset.  (This approach is naïve and is not re-

quired by our model [6]. Work is underway to address the 

problems of normalizing the variable names in the archive 

[7].)   

Next, we score each search condition and matched varia-

ble. If no variable was matched to a search term (for example, 

there is a temporal search condition but the data is from an 

unknown time), we give that search condition a “null” score. 

If a variable is matched  and  the search term merely requests 

the existence of that variable in the dataset (e.g., <“temper-

ature”,,>) we count it as a complete match for the term and  

give it the maximum possible score (MaxCondScore). If a 

variable is matched and the search term contains a range, the 

similarity between the search term and matching variable is 

scored  using the distance measure described in Appendix A. 
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After processing all terms we normalize the final score by the 

number of terms in the search to give an overall score for 

each catalog entry. As described in Appendix A, in our cu r-

rent implementation we set the MaxCondScore to 100; the 

minimum score is not bounded.   

Finally, we sort the resulting list of scores and return the 

catalog entries with the highest scores. We are exploring op-

timizations to this pseudo-code, such as traversing hierar-

chical relationships between datasets, to derive the same re-

sults more efficiently.  

Subsetting Data Into Hierarchies 

An individual dataset maybe partitioned into multiple “vir-

tual datasets”, as when a dataset covering a long time period  

or large geographic area is d ivided into smaller subsets.  

Partitioning choices must in general be made before a d a-

taset is scanned and its features inserted into the metadata 

catalog. At CMOP, these choices are made for each major 

category of data collected ; for example, temporary sensors 

mounted on mobile platforms are partitioned  by time and  

path segmentation, while permanently installed sensors on 

stationary platforms are partitioned by time only. While par-

titioning on a variable value is also possible, we have not yet 

encountered  a case where this partitioning was requested by 

our scientists; however, a smaller time period  or geographic 

area will generally translate to a smaller range for each ob-

served variable.   

A parent dataset and its contained subsets coexist in the 

metadata catalog; in fact, multiple d ifferent segmentations of 

the same data can coexist within the metadata catalog [8]. 

The hierarchical relationship of the contained subsets can be 

captured in the metadata catalog. The search engine returns 

virtual or real datasets from all levels of the hierarchy based  

on their scores, allowing the “closest” dataset subset to be 

returned for a search. Thus, subsets and supersets of the 

same data may be returned  for the same query, but at d iffer-

ent places in the ranking, with the objective of returning the 

most useful dataset subset for the current search.  

Scoring Textual Data 

In add ition to the large quantity of numeric data, some d a-

tasets contain one or more fields of textual data. For all col-

umns containing textual data, we currently allow searches for 

the existence of these variables.  

There are a few data fields, such as research notes or study 

descriptions, for which trad itional textual search may apply. 

However, d iscussions with our scientists lead us to believe 

that trad itional text search is inappropriate for most textual 

variables. Examples cited at CMOP of such textual variables 

include quality levels, species names, and unique hybrid  tex-

tual-numeric identifiers given to water samples and  test loca-

tions. The notion of distance still seems germane to such var-

iables. For example, quality levels are ordered, species are 

more or less related, and  the numbering schemes were often 

selected for memorability by embedding a notion of distance. 

Thus, we expect notions of distance still apply, though the 

details of the similarity measures may need to change.  

We experimented with using our distance measure for or-

dinal categorical data, such as quality levels. We assigned  

each quality level a value within a range that respects its or-

dinal position, with “no quality control” having the lowest 

value and “full quality control” having the highest. We con-

vert the search term range and data ranges to the matching 

numeric values and apply our distance measure to these va l-

ues. While this approach has been well accepted by our im-

plementation’s users, it relies on assessing each textual varia-

ble independently for applicability and to assign the ordinal 

values, and  so we do not see this approach as viable for large 

archives with many variables. Other measures will be re-

quired for d istances that cannot be captured by a linear or-

der, for example, distance between species names.  

Combining textual and numeric search terms remains an 

area for future research. While it is mathematically possible 

to combine scores from these two methods – for example, by 

includ ing the score for each textual term in the final score 

normalization – we do not yet have a model for how scien-

tists perceive these combinations. In particular, unlike the 

continuous numeric and existence measures, we have not 

validated  these additional approaches with formal user stu d-

ies. While there are certainly technical issues to be addressed , 

we believe more user studies exploring how users expect the 

systems to operate to be the most pressing issue. 

 

 

Inputs: Search specification S, catalog entry col-

lection D, desired number of highest-scoring entries 

k 

 

Initialize array Scores[] 

For each catalog entry d in collection D do: 

  Scores[d] = Score(S,d) 

Sort values in Scores[]  

Return: Scores[1..k] 

 

Score(S,d): 

// Calculate similarity score for search S on 

// dataset d 

  MaxCondScore = 100 // Implementation choice 

  C = Match(S,d)    

  s = 0 // initialize score accumulator to 0 

  For each tuple (s,c) in C do: 

    If (c is Null): // No match found 

       Continue     // No change to score 

    Elif (s is a variable existence condition): 

        s = s + MaxCondScore  

    Else // variable with range condition 

        s = s + Scoring(s, c) //apply measure 

  Return: s/|S| 

 

Match(Q,d):   // Naïve version 

// Match search terms to features 

   matched = {}  // initialize empty set 

   For each search condition q in Q do: 

     If (requested variable v exists in d): 

        Add (q,v) to matched 

     Else: 

        Add (q,Null) to matched 

   Return: matched 

Fig. 13. Simplified pseudo-code for dataset summary ranked 

search algorithm. 
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